#include "player.h" #include "world.h" Player::Player(const Vector3f& position, float rotX, float rotY) : m_position(position), m_rotX(rotX), m_rotY(rotY) { m_velocity = Vector3f(0, 0, 0); m_airborne = true; } void Player::TurnLeftRight(float value) { m_rotY += value; if (m_rotY > 360) m_rotY = 0; else if (m_rotY < -360) m_rotY = 0; } void Player::TurnTopBottom(float value) { m_rotX += value; if (m_rotX > 80) m_rotX = 80; else if (m_rotX < -80) m_rotX = -80; } Vector3f Player::GetInput(bool front, bool back, bool left, bool right, bool jump, bool dash, float elapsedTime) { Vector3f delta = Vector3f(0, 0, 0); float yrotrad = (m_rotY / 57.2957795056f); // 180/Pi = 57.295... float xrotrad = (m_rotX / 57.2957795056f); m_direction = Vector3f(cos(xrotrad) * sin(yrotrad), -sin(xrotrad), cos(xrotrad) * -cos(yrotrad)); m_direction.Normalize(); if (front) { delta.x += float(sin(yrotrad)) * elapsedTime * 10.f; delta.z += float(-cos(yrotrad)) * elapsedTime * 10.f; } else if (back) { delta.x += float(-sin(yrotrad)) * elapsedTime * 10.f; delta.z += float(cos(yrotrad)) * elapsedTime * 10.f; } if (left) { delta.x += float(-cos(yrotrad)) * elapsedTime * 10.f; delta.z += float(-sin(yrotrad)) * elapsedTime * 10.f; } else if (right) { delta.x += float(cos(yrotrad)) * elapsedTime * 10.f; delta.z += float(sin(yrotrad)) * elapsedTime * 10.f; } delta.Normalize(); delta.x *= .6f; delta.z *= .6f; if (jump && !m_airborne) { delta.y += .32f; m_airborne = true; } return delta; } void Player::ApplyPhysics(Vector3f input, World world, float elapsedTime) { /* Gestion de collisions */ BlockType bt1, bt2, bt3; bt1 = world.BlockAt(GetPosition().x, GetPosition().y + input.y, GetPosition().z); bt2 = world.BlockAt(GetPosition().x, GetPosition().y + input.y - 0.9f, GetPosition().z); bt3 = world.BlockAt(GetPosition().x, GetPosition().y + input.y - 1.7f, GetPosition().z); if ((bt1 != BTYPE_AIR || bt2 != BTYPE_AIR || bt3 != BTYPE_AIR) && m_position.y < 129.7f) { bt1 = world.BlockAt(GetPosition().x, GetPosition().y + .3f, GetPosition().z); if (bt1 == BTYPE_AIR) m_position.y = (int)m_position.y + .7f; m_velocity.y = input.y = 0; m_airborne = false; } else { if (abs(m_velocity.y) < 1.1f) m_velocity.y += input.y - 1.1f * elapsedTime; bt3 = world.BlockAt(GetPosition().x, GetPosition().y + m_velocity.y - 1.7f, GetPosition().z); bt1 = world.BlockAt(GetPosition().x, GetPosition().y + .3f, GetPosition().z); if (bt3 != BTYPE_AIR) { m_velocity.y = 0; m_airborne = false; } else if (bt1 != BTYPE_AIR) { m_velocity.y = -.1f; } else m_airborne = true; } bt1 = world.BlockAt(GetPosition().x + input.x, GetPosition().y, GetPosition().z); bt2 = world.BlockAt(GetPosition().x + input.x, GetPosition().y - 0.9f, GetPosition().z); bt3 = world.BlockAt(GetPosition().x + input.x, GetPosition().y - 1.7f, GetPosition().z); if (bt1 != BTYPE_AIR || bt2 != BTYPE_AIR || bt3 != BTYPE_AIR) { input.x = m_velocity.x = 0; m_velocity.z *= .5f; } bt1 = world.BlockAt(GetPosition().x, GetPosition().y, GetPosition().z + input.z); bt2 = world.BlockAt(GetPosition().x, GetPosition().y - 0.9f, GetPosition().z + input.z); bt3 = world.BlockAt(GetPosition().x, GetPosition().y - 1.7f, GetPosition().z + input.z); if (bt1 != BTYPE_AIR || bt2 != BTYPE_AIR || bt3 != BTYPE_AIR) { input.z = m_velocity.z = 0; m_velocity.x *= .5f; } /* Fin gestion de collisions */ /* Gestion de la friction */ if (!m_airborne) { m_velocity.x += input.x * 2.f * elapsedTime; m_velocity.z += input.z * 2.f * elapsedTime; if (input.x == 0.f) m_velocity.x *= .8f; if (input.z == 0.f) m_velocity.z *= .8f; } else { m_velocity.x += input.x * .4f * elapsedTime; // Techniquement contre les lois de la physique, mais c'est beaucoup moins chiant pour grimper sur les blocs. m_velocity.z += input.z * .4f * elapsedTime; m_velocity.x *= .99f; m_velocity.z *= .99f; } /* Fin gestion de la friction */ float vy = m_velocity.y; m_velocity.y = 1.f; // Padding pour limiter le x et z lors du Normalize(). if (m_velocity.Length() >= 1.f) m_velocity.Normalize(); // Limiteur de vitesse en x/z. m_velocity.y = 0; if (m_velocity.Length() < .005f) m_velocity.Zero(); // Threshold en x/z. m_velocity.y = vy; m_position += m_velocity; static float bobbingtime = 0; // Gestion de la caméra if (bobbingtime <= 360.f) bobbingtime += elapsedTime * 20.f; else bobbingtime = 0; m_POV = m_position.y; m_POV += m_airborne ? 0 : (sin(bobbingtime) - 0.5f) * (abs(m_velocity.x) + abs(m_velocity.z)) * .2f; } void Player::ApplyTransformation(Transformation& transformation, bool rel) const { transformation.ApplyRotation(-m_rotX, 1, 0, 0); transformation.ApplyRotation(-m_rotY, 0, 1, 0); if (rel) transformation.ApplyTranslation(-GetPOV()); } Vector3f Player::GetPosition() const { return Vector3f(m_position.x + CHUNK_SIZE_X * WORLD_SIZE_X / 2, m_position.y, m_position.z + CHUNK_SIZE_Z * WORLD_SIZE_Y / 2); } Vector3f Player::GetVelocity() const { return m_velocity; } Vector3f Player::GetPOV() const { return Vector3f(GetPosition().x, m_POV, GetPosition().z); } Vector3f Player::GetDirection() const { return m_direction; } void Player::Teleport(int& x, int& z) { m_position.x -= x * CHUNK_SIZE_X; m_position.z -= z * CHUNK_SIZE_Z; }