/* coherent noise function over 1, 2 or 3 dimensions */ /* (copyright Ken Perlin) */ #include #include #include #include "perlin.h" #define B SAMPLE_SIZE #define BM (SAMPLE_SIZE-1) #define N 0x1000 #define NP 12 /* 2^N */ #define NM 0xfff #define s_curve(t) ( t * t * (3.0f - 2.0f * t) ) #define lerp(t, a, b) ( a + t * (b - a) ) #define setup(i,b0,b1,r0,r1)\ t = vec[i] + N;\ b0 = ((int)t) & BM;\ b1 = (b0+1) & BM;\ r0 = t - (int)t;\ r1 = r0 - 1.0f; float Perlin::noise1(float arg) { int bx0, bx1; float rx0, rx1, sx, t, u, v, vec[1]; vec[0] = arg; if (mStart) { srand(mSeed); mStart = false; init(); } setup(0, bx0,bx1, rx0,rx1); sx = s_curve(rx0); u = rx0 * g1[ p[ bx0 ] ]; v = rx1 * g1[ p[ bx1 ] ]; return lerp(sx, u, v); } float Perlin::noise2(float vec[2]) { int bx0, bx1, by0, by1, b00, b10, b01, b11; float rx0, rx1, ry0, ry1, *q, sx, sy, a, b, t, u, v; int i, j; if (mStart) { srand(mSeed); mStart = false; init(); } setup(0,bx0,bx1,rx0,rx1); setup(1,by0,by1,ry0,ry1); i = p[bx0]; j = p[bx1]; b00 = p[i + by0]; b10 = p[j + by0]; b01 = p[i + by1]; b11 = p[j + by1]; sx = s_curve(rx0); sy = s_curve(ry0); #define at2(rx,ry) ( rx * q[0] + ry * q[1] ) q = g2[b00]; u = at2(rx0,ry0); q = g2[b10]; v = at2(rx1,ry0); a = lerp(sx, u, v); q = g2[b01]; u = at2(rx0,ry1); q = g2[b11]; v = at2(rx1,ry1); b = lerp(sx, u, v); return lerp(sy, a, b); } float Perlin::noise3(float vec[3]) { int bx0, bx1, by0, by1, bz0, bz1, b00, b10, b01, b11; float rx0, rx1, ry0, ry1, rz0, rz1, *q, sy, sz, a, b, c, d, t, u, v; int i, j; if (mStart) { srand(mSeed); mStart = false; init(); } setup(0, bx0,bx1, rx0,rx1); setup(1, by0,by1, ry0,ry1); setup(2, bz0,bz1, rz0,rz1); i = p[ bx0 ]; j = p[ bx1 ]; b00 = p[ i + by0 ]; b10 = p[ j + by0 ]; b01 = p[ i + by1 ]; b11 = p[ j + by1 ]; t = s_curve(rx0); sy = s_curve(ry0); sz = s_curve(rz0); #define at3(rx,ry,rz) ( rx * q[0] + ry * q[1] + rz * q[2] ) q = g3[ b00 + bz0 ] ; u = at3(rx0,ry0,rz0); q = g3[ b10 + bz0 ] ; v = at3(rx1,ry0,rz0); a = lerp(t, u, v); q = g3[ b01 + bz0 ] ; u = at3(rx0,ry1,rz0); q = g3[ b11 + bz0 ] ; v = at3(rx1,ry1,rz0); b = lerp(t, u, v); c = lerp(sy, a, b); q = g3[ b00 + bz1 ] ; u = at3(rx0,ry0,rz1); q = g3[ b10 + bz1 ] ; v = at3(rx1,ry0,rz1); a = lerp(t, u, v); q = g3[ b01 + bz1 ] ; u = at3(rx0,ry1,rz1); q = g3[ b11 + bz1 ] ; v = at3(rx1,ry1,rz1); b = lerp(t, u, v); d = lerp(sy, a, b); return lerp(sz, c, d); } void Perlin::normalize2(float v[2]) { float s; s = (float)sqrt(v[0] * v[0] + v[1] * v[1]); s = 1.0f/s; v[0] = v[0] * s; v[1] = v[1] * s; } void Perlin::normalize3(float v[3]) { float s; s = (float)sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]); s = 1.0f/s; v[0] = v[0] * s; v[1] = v[1] * s; v[2] = v[2] * s; } void Perlin::init(void) { int i, j, k; for (i = 0 ; i < B ; i++) { p[i] = i; g1[i] = (float)((rand() % (B + B)) - B) / B; for (j = 0 ; j < 2 ; j++) g2[i][j] = (float)((rand() % (B + B)) - B) / B; normalize2(g2[i]); for (j = 0 ; j < 3 ; j++) g3[i][j] = (float)((rand() % (B + B)) - B) / B; normalize3(g3[i]); } while (--i) { k = p[i]; p[i] = p[j = rand() % B]; p[j] = k; } for (i = 0 ; i < B + 2 ; i++) { p[B + i] = p[i]; g1[B + i] = g1[i]; for (j = 0 ; j < 2 ; j++) g2[B + i][j] = g2[i][j]; for (j = 0 ; j < 3 ; j++) g3[B + i][j] = g3[i][j]; } } float Perlin::perlin_noise_2D(float vec[2]) { int terms = mOctaves; //float freq = mFrequency; float result = 0.0f; float amp = mAmplitude; vec[0]*=mFrequency; vec[1]*=mFrequency; for( int i=0; i