#include "player.h" Player::Player(const Vector3f& position, float rotX, float rotY) : m_position(position), m_rotX(rotX), m_rotY(rotY) { m_velocity = Vector3f(0, 0, 0); } void Player::TurnLeftRight(float value) { m_rotY += value; if (m_rotY > 360) m_rotY = 0; else if (m_rotY < -360) m_rotY = 0; } void Player::TurnTopBottom(float value) { m_rotX += value; if (m_rotX > 45) m_rotX = 45; else if (m_rotX < -45) m_rotX = -45; } void Player::Move(bool front, bool back, bool left, bool right, bool jump, bool dash, float elapsedTime) { static float accWS = 0; static float accAD = 0; static float accjmp = 0; static float yrotrad = 0; static float xrotrad = 0; static bool jumped = true; static int dbljump = 0; // Peut sauter ou dasher tant que la variable est en dessous de 2. static float dashtimeout = 0; static float bobbingtime = 0; m_direction = Vector3f(cos(m_rotY / 57.2957795056f) * cos(m_rotX / 57.2957795056f), -sin(m_rotX / 57.2957795056f), sin(m_rotY / 57.2957795056f) * cos(m_rotX / 57.2957795056f)); if (bobbingtime <= 360.f) bobbingtime += elapsedTime * m_topspeed / 2; else bobbingtime = 0; if (dashtimeout > 0.f) { dash = false; dashtimeout -= elapsedTime; } else dashtimeout = 0; if (jumped && !jump) jumped = false; // Anti-rebondissement du saut, pour pouvoir rebondir. if (dash) dashtimeout = 2; if (dbljump >= 2) jump = false; if ((jump || dash) && !jumped ) { accjmp += jump? m_jumpforce: 0.1f; jumped = true; dbljump++; } else if (m_position.y > -0.2f && accjmp != 0) { if (accjmp > 0.f) { if (jump) { accjmp *= 0.95f - accjmp * elapsedTime; accjmp -= elapsedTime * 1.1; } else { accjmp *= 0.75f - accjmp * elapsedTime; accjmp -= elapsedTime * 1.1; } } else { if (jump) accjmp -= elapsedTime * 0.7; else accjmp -= elapsedTime * 0.9; } } else accjmp = 0; if (m_position.y < 0.f) { // Suivi de mouvement pour l'atterrissage. m_position.y += elapsedTime * 5.f; if (m_position.y > 0.f) { dbljump = 0; m_position.y = 0; } } if ((dbljump < 1 && ( left || right || front || back)) || (dash && !(left || right || front || back)) ) { yrotrad = (m_rotY / 57.2957795056f); // 180/Pi = 57.295... xrotrad = (m_rotX / 57.2957795056f); if (dash) accWS = m_topspeed; // Pour avoir un boost de vitesse vers l'avant si le dash est appuyé seul. } // Ajoute l'accélération de saut et le view bobbing. m_velocity.y = accjmp + (sin(bobbingtime) - 0.5f) * ((abs(accWS) + abs(accAD)) / 2.f) / (10.f * m_topspeed); m_position.y += m_velocity.y; if (front) { if (dbljump == 0) if (accWS < m_topspeed) accWS += elapsedTime * 30; else accWS = m_topspeed; if (dash) accWS *= accWS > 0.f ? 3.f : -1.f; m_velocity.x = float(sin(yrotrad)) * elapsedTime * accWS; m_position.x += m_velocity.x; m_velocity.z = float(-cos(yrotrad)) * elapsedTime * accWS; m_position.z += m_velocity.z; } else if (back) { if (dbljump == 0) if (accWS > -m_topspeed) accWS -= elapsedTime * 30; else accWS = -m_topspeed; if (dash) accWS *= accWS < 0.f? 3.f: -1.f; m_velocity.x = float(-sin(yrotrad)) * elapsedTime * -accWS; m_position.x += m_velocity.x; m_velocity.z = float(cos(yrotrad)) * elapsedTime * -accWS; m_position.z += m_velocity.z; } else if (accWS != 0) { accWS = accWS > 0 ? accWS - elapsedTime * (m_position.y > 0.1f ? 10 : 120) : accWS + elapsedTime * (m_position.y > 0.1f ? 10 : 120); m_velocity.x = float(sin(yrotrad)) * elapsedTime * accWS; m_position.x += m_velocity.x; m_velocity.z = float(-cos(yrotrad)) * elapsedTime * accWS; m_position.z += m_velocity.z; if (accWS < 1 && accWS > -1) accWS = 0; } if (left) { if (dbljump == 0) if (accAD < m_topspeed) accAD += elapsedTime * 30; else accAD = m_topspeed; if (dash) accAD *= accAD > 0.f? 3.f: -1.f; m_velocity.x = float(-cos(yrotrad)) * elapsedTime * accAD; m_position.x += m_velocity.x; m_velocity.z = float(-sin(yrotrad)) * elapsedTime * accAD; m_position.z += m_velocity.z; } else if (right) { if (dbljump == 0) if (accAD > -m_topspeed) accAD -= elapsedTime * 30; else accAD = -m_topspeed; if (dash) accAD *= accAD < 0.f ? 3.f : -1.f; m_velocity.x = float(cos(yrotrad)) * elapsedTime * -accAD; m_position.x += m_velocity.x; m_velocity.z = float(sin(yrotrad)) * elapsedTime * -accAD; m_position.z += m_velocity.z; } else if (accAD != 0) { accAD = accAD > 0 ? accAD - elapsedTime * (m_position.y > 0.1f ? 10 : 120) : accAD + elapsedTime * (m_position.y > 0.1f ? 10 : 120); m_velocity.x = float(-cos(yrotrad)) * elapsedTime * accAD; m_position.x += m_velocity.x; m_velocity.z = float(-sin(yrotrad)) * elapsedTime * accAD; m_position.z += m_velocity.z; if (accAD < 1.f && accAD > -1.f) accAD = 0; } // Gestion de si le personnage va en diagonale, qu'il n'aille pas plus vite que s'il allait en ligne droite. if (abs(accAD) + abs(accWS) > sqrtf(exp2f(m_topspeed) * 2)) { accWS *= 0.8f; accAD *= 0.8f; } // Threshold de vélocité. if (abs(m_velocity.x) < 0.02f) m_velocity.x = 0; if (abs(m_velocity.y) < 0.02f) m_velocity.y = 0; if (abs(m_velocity.z) < 0.02f) m_velocity.z = 0; } void Player::ApplyTransformation(Transformation& transformation, bool rel) const { transformation.ApplyRotation(-m_rotX, 1, 0, 0); transformation.ApplyRotation(-m_rotY, 0, 1, 0); if (rel) transformation.ApplyTranslation(-m_position); } Vector3f Player::GetPosition() const { return m_position; } Vector3f Player::GetVelocity() const { return m_velocity; } Vector3f Player::GetDirection() const { return m_direction; }