SyndicatQuebecoisdelaConstr.../SQCSim2021/vector3.h

220 lines
3.9 KiB
C
Raw Permalink Normal View History

#ifndef VECTOR3_H__
#define VECTOR3_H__
#include <iostream>
#include <cmath>
template <class T>
class Vector3
{
public:
Vector3();
Vector3(const T& x, const T& y, const T& z);
~Vector3();
T Length() const;
void Normalize();
void Zero();
T Dot(const Vector3<T>& v) const;
Vector3<T> Cross(const Vector3<T>& v) const;
Vector3<T> operator+(const Vector3<T>& v) const;
Vector3<T> operator-(const Vector3<T>& v) const;
Vector3<T> operator-() const;
Vector3<T> operator+(const T& v) const;
Vector3<T> operator-(const T& v) const;
Vector3<T> operator/(const T& v) const;
Vector3<T> operator*(const T& v) const;
Vector3<T>& operator=(const Vector3<T>& v);
Vector3<T>& operator+=(const Vector3<T>& v);
Vector3<T>& operator-=(const Vector3<T>& v);
Vector3<T>& operator+=(const T& v);
Vector3<T>& operator-=(const T& v);
Vector3<T>& operator/=(const T& v);
Vector3<T>& operator*=(const T& v);
bool operator==(const Vector3<T>& v) const;
bool operator!=(const Vector3<T>& v) const;
void Afficher() const;
public:
T x, y, z;
};
typedef Vector3<int> Vector3i;
typedef Vector3<float> Vector3f;
template <class T>
inline std::ostream& operator<<(std::ostream& out, const Vector3<T>& v)
{
out << "[" << v.x << ", " << v.y << ", " << v.z << "]";
return out;
}
template <class T>
Vector3<T>::Vector3()
{
}
template <class T>
Vector3<T>::Vector3(const T& x, const T& y, const T& z) : x(x), y(y), z(z)
{
}
template <class T>
Vector3<T>::~Vector3()
{
}
template <class T>
T Vector3<T>::Length() const
{
return sqrt(x*x + y*y + z*z);
}
template <class T>
void Vector3<T>::Normalize()
{
T len = Length();
if (len != 0)
{
x /= len;
y /= len;
z /= len;
}
}
template <class T>
void Vector3<T>::Zero()
{
x = y = z = 0;
}
template <class T>
T Vector3<T>::Dot(const Vector3<T>& v) const
{
return (x * v.x) + (y * v.y) + (z * v.z);
}
template <class T>
Vector3<T> Vector3<T>::Cross(const Vector3<T>& v) const
{
return Vector3<T>(
y * v.z - v.y * z,
z * v.x - v.z * x,
x * v.y - v.x * y);
}
template <class T>
Vector3<T> Vector3<T>::operator+(const Vector3<T>& v) const
{
return Vector3<T>(x + v.x, y + v.y, z + v.z);
}
template <class T>
Vector3<T> Vector3<T>::operator-(const Vector3<T>& v) const
{
return Vector3<T>(x - v.x, y - v.y, z - v.z);
}
template <class T>
Vector3<T> Vector3<T>::operator-() const
{
return Vector3<T>(-x, -y, -z);
}
template <class T>
Vector3<T> Vector3<T>::operator+(const T& v) const
{
return Vector3<T>(x + v, y + v, z + v);
}
template <class T>
Vector3<T> Vector3<T>::operator-(const T& v) const
{
return Vector3<T>(x - v, y - v, z - v);
}
template <class T>
Vector3<T> Vector3<T>::operator/(const T& v) const
{
return Vector3<T>(x / v, y / v, z / v);
}
template <class T>
Vector3<T> Vector3<T>::operator*(const T& v) const
{
return Vector3<T>(x * v, y * v, z * v);
}
template <class T>
Vector3<T>& Vector3<T>::operator=(const Vector3<T>& v)
{
x = v.x;
y = v.y;
z = v.z;
return *this;
}
template <class T>
Vector3<T>& Vector3<T>::operator+=(const Vector3<T>& v)
{
return (*this = *this + v);
}
template <class T>
Vector3<T>& Vector3<T>::operator-=(const Vector3<T>& v)
{
return (*this = *this - v);
}
template <class T>
Vector3<T>& Vector3<T>::operator+=(const T& v)
{
return (*this = *this + v);
}
template <class T>
Vector3<T>& Vector3<T>::operator-=(const T& v)
{
return (*this = *this - v);
}
template <class T>
Vector3<T>& Vector3<T>::operator/=(const T& v)
{
return (*this = *this / v);
}
template <class T>
Vector3<T>& Vector3<T>::operator*=(const T& v)
{
return (*this = *this * v);
}
template <class T>
bool Vector3<T>::operator==(const Vector3<T>& v) const
{
return (x == v.x && y == v.y && z == v.z);
}
template <class T>
bool Vector3<T>::operator!=(const Vector3<T>& v) const
{
return !(*this == v);
}
template <class T>
void Vector3<T>::Afficher() const
{
std::cout << "[" << x << ", " << y << ", " << z << "]" << std::endl;
}
#endif // VECTOR3_H__