//////////////////////////////////////////////////////////// // // SFML - Simple and Fast Multimedia Library // Copyright (C) 2007-2015 Laurent Gomila (laurent@sfml-dev.org) // // This software is provided 'as-is', without any express or implied warranty. // In no event will the authors be held liable for any damages arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it freely, // subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; // you must not claim that you wrote the original software. // If you use this software in a product, an acknowledgment // in the product documentation would be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, // and must not be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source distribution. // //////////////////////////////////////////////////////////// #ifndef SFML_SHADER_HPP #define SFML_SHADER_HPP //////////////////////////////////////////////////////////// // Headers //////////////////////////////////////////////////////////// #include #include #include #include #include #include #include #include #include namespace sf { class InputStream; class Texture; //////////////////////////////////////////////////////////// /// \brief Shader class (vertex and fragment) /// //////////////////////////////////////////////////////////// class SFML_GRAPHICS_API Shader : GlResource, NonCopyable { public: //////////////////////////////////////////////////////////// /// \brief Types of shaders /// //////////////////////////////////////////////////////////// enum Type { Vertex, ///< Vertex shader Fragment ///< Fragment (pixel) shader }; //////////////////////////////////////////////////////////// /// \brief Special type that can be passed to setParameter, /// and that represents the texture of the object being drawn /// /// \see setParameter(const std::string&, CurrentTextureType) /// //////////////////////////////////////////////////////////// struct CurrentTextureType {}; //////////////////////////////////////////////////////////// /// \brief Represents the texture of the object being drawn /// /// \see setParameter(const std::string&, CurrentTextureType) /// //////////////////////////////////////////////////////////// static CurrentTextureType CurrentTexture; public: //////////////////////////////////////////////////////////// /// \brief Default constructor /// /// This constructor creates an invalid shader. /// //////////////////////////////////////////////////////////// Shader(); //////////////////////////////////////////////////////////// /// \brief Destructor /// //////////////////////////////////////////////////////////// ~Shader(); //////////////////////////////////////////////////////////// /// \brief Load either the vertex or fragment shader from a file /// /// This function loads a single shader, either vertex or /// fragment, identified by the second argument. /// The source must be a text file containing a valid /// shader in GLSL language. GLSL is a C-like language /// dedicated to OpenGL shaders; you'll probably need to /// read a good documentation for it before writing your /// own shaders. /// /// \param filename Path of the vertex or fragment shader file to load /// \param type Type of shader (vertex or fragment) /// /// \return True if loading succeeded, false if it failed /// /// \see loadFromMemory, loadFromStream /// //////////////////////////////////////////////////////////// bool loadFromFile(const std::string& filename, Type type); //////////////////////////////////////////////////////////// /// \brief Load both the vertex and fragment shaders from files /// /// This function loads both the vertex and the fragment /// shaders. If one of them fails to load, the shader is left /// empty (the valid shader is unloaded). /// The sources must be text files containing valid shaders /// in GLSL language. GLSL is a C-like language dedicated to /// OpenGL shaders; you'll probably need to read a good documentation /// for it before writing your own shaders. /// /// \param vertexShaderFilename Path of the vertex shader file to load /// \param fragmentShaderFilename Path of the fragment shader file to load /// /// \return True if loading succeeded, false if it failed /// /// \see loadFromMemory, loadFromStream /// //////////////////////////////////////////////////////////// bool loadFromFile(const std::string& vertexShaderFilename, const std::string& fragmentShaderFilename); //////////////////////////////////////////////////////////// /// \brief Load either the vertex or fragment shader from a source code in memory /// /// This function loads a single shader, either vertex or /// fragment, identified by the second argument. /// The source code must be a valid shader in GLSL language. /// GLSL is a C-like language dedicated to OpenGL shaders; /// you'll probably need to read a good documentation for /// it before writing your own shaders. /// /// \param shader String containing the source code of the shader /// \param type Type of shader (vertex or fragment) /// /// \return True if loading succeeded, false if it failed /// /// \see loadFromFile, loadFromStream /// //////////////////////////////////////////////////////////// bool loadFromMemory(const std::string& shader, Type type); //////////////////////////////////////////////////////////// /// \brief Load both the vertex and fragment shaders from source codes in memory /// /// This function loads both the vertex and the fragment /// shaders. If one of them fails to load, the shader is left /// empty (the valid shader is unloaded). /// The sources must be valid shaders in GLSL language. GLSL is /// a C-like language dedicated to OpenGL shaders; you'll /// probably need to read a good documentation for it before /// writing your own shaders. /// /// \param vertexShader String containing the source code of the vertex shader /// \param fragmentShader String containing the source code of the fragment shader /// /// \return True if loading succeeded, false if it failed /// /// \see loadFromFile, loadFromStream /// //////////////////////////////////////////////////////////// bool loadFromMemory(const std::string& vertexShader, const std::string& fragmentShader); //////////////////////////////////////////////////////////// /// \brief Load either the vertex or fragment shader from a custom stream /// /// This function loads a single shader, either vertex or /// fragment, identified by the second argument. /// The source code must be a valid shader in GLSL language. /// GLSL is a C-like language dedicated to OpenGL shaders; /// you'll probably need to read a good documentation for it /// before writing your own shaders. /// /// \param stream Source stream to read from /// \param type Type of shader (vertex or fragment) /// /// \return True if loading succeeded, false if it failed /// /// \see loadFromFile, loadFromMemory /// //////////////////////////////////////////////////////////// bool loadFromStream(InputStream& stream, Type type); //////////////////////////////////////////////////////////// /// \brief Load both the vertex and fragment shaders from custom streams /// /// This function loads both the vertex and the fragment /// shaders. If one of them fails to load, the shader is left /// empty (the valid shader is unloaded). /// The source codes must be valid shaders in GLSL language. /// GLSL is a C-like language dedicated to OpenGL shaders; /// you'll probably need to read a good documentation for /// it before writing your own shaders. /// /// \param vertexShaderStream Source stream to read the vertex shader from /// \param fragmentShaderStream Source stream to read the fragment shader from /// /// \return True if loading succeeded, false if it failed /// /// \see loadFromFile, loadFromMemory /// //////////////////////////////////////////////////////////// bool loadFromStream(InputStream& vertexShaderStream, InputStream& fragmentShaderStream); //////////////////////////////////////////////////////////// /// \brief Change a float parameter of the shader /// /// \a name is the name of the variable to change in the shader. /// The corresponding parameter in the shader must be a float /// (float GLSL type). /// /// Example: /// \code /// uniform float myparam; // this is the variable in the shader /// \endcode /// \code /// shader.setParameter("myparam", 5.2f); /// \endcode /// /// \param name Name of the parameter in the shader /// \param x Value to assign /// //////////////////////////////////////////////////////////// void setParameter(const std::string& name, float x); //////////////////////////////////////////////////////////// /// \brief Change a 2-components vector parameter of the shader /// /// \a name is the name of the variable to change in the shader. /// The corresponding parameter in the shader must be a 2x1 vector /// (vec2 GLSL type). /// /// Example: /// \code /// uniform vec2 myparam; // this is the variable in the shader /// \endcode /// \code /// shader.setParameter("myparam", 5.2f, 6.0f); /// \endcode /// /// \param name Name of the parameter in the shader /// \param x First component of the value to assign /// \param y Second component of the value to assign /// //////////////////////////////////////////////////////////// void setParameter(const std::string& name, float x, float y); //////////////////////////////////////////////////////////// /// \brief Change a 3-components vector parameter of the shader /// /// \a name is the name of the variable to change in the shader. /// The corresponding parameter in the shader must be a 3x1 vector /// (vec3 GLSL type). /// /// Example: /// \code /// uniform vec3 myparam; // this is the variable in the shader /// \endcode /// \code /// shader.setParameter("myparam", 5.2f, 6.0f, -8.1f); /// \endcode /// /// \param name Name of the parameter in the shader /// \param x First component of the value to assign /// \param y Second component of the value to assign /// \param z Third component of the value to assign /// //////////////////////////////////////////////////////////// void setParameter(const std::string& name, float x, float y, float z); //////////////////////////////////////////////////////////// /// \brief Change a 4-components vector parameter of the shader /// /// \a name is the name of the variable to change in the shader. /// The corresponding parameter in the shader must be a 4x1 vector /// (vec4 GLSL type). /// /// Example: /// \code /// uniform vec4 myparam; // this is the variable in the shader /// \endcode /// \code /// shader.setParameter("myparam", 5.2f, 6.0f, -8.1f, 0.4f); /// \endcode /// /// \param name Name of the parameter in the shader /// \param x First component of the value to assign /// \param y Second component of the value to assign /// \param z Third component of the value to assign /// \param w Fourth component of the value to assign /// //////////////////////////////////////////////////////////// void setParameter(const std::string& name, float x, float y, float z, float w); //////////////////////////////////////////////////////////// /// \brief Change a 2-components vector parameter of the shader /// /// \a name is the name of the variable to change in the shader. /// The corresponding parameter in the shader must be a 2x1 vector /// (vec2 GLSL type). /// /// Example: /// \code /// uniform vec2 myparam; // this is the variable in the shader /// \endcode /// \code /// shader.setParameter("myparam", sf::Vector2f(5.2f, 6.0f)); /// \endcode /// /// \param name Name of the parameter in the shader /// \param vector Vector to assign /// //////////////////////////////////////////////////////////// void setParameter(const std::string& name, const Vector2f& vector); //////////////////////////////////////////////////////////// /// \brief Change a 3-components vector parameter of the shader /// /// \a name is the name of the variable to change in the shader. /// The corresponding parameter in the shader must be a 3x1 vector /// (vec3 GLSL type). /// /// Example: /// \code /// uniform vec3 myparam; // this is the variable in the shader /// \endcode /// \code /// shader.setParameter("myparam", sf::Vector3f(5.2f, 6.0f, -8.1f)); /// \endcode /// /// \param name Name of the parameter in the shader /// \param vector Vector to assign /// //////////////////////////////////////////////////////////// void setParameter(const std::string& name, const Vector3f& vector); //////////////////////////////////////////////////////////// /// \brief Change a color parameter of the shader /// /// \a name is the name of the variable to change in the shader. /// The corresponding parameter in the shader must be a 4x1 vector /// (vec4 GLSL type). /// /// It is important to note that the components of the color are /// normalized before being passed to the shader. Therefore, /// they are converted from range [0 .. 255] to range [0 .. 1]. /// For example, a sf::Color(255, 125, 0, 255) will be transformed /// to a vec4(1.0, 0.5, 0.0, 1.0) in the shader. /// /// Example: /// \code /// uniform vec4 color; // this is the variable in the shader /// \endcode /// \code /// shader.setParameter("color", sf::Color(255, 128, 0, 255)); /// \endcode /// /// \param name Name of the parameter in the shader /// \param color Color to assign /// //////////////////////////////////////////////////////////// void setParameter(const std::string& name, const Color& color); //////////////////////////////////////////////////////////// /// \brief Change a matrix parameter of the shader /// /// \a name is the name of the variable to change in the shader. /// The corresponding parameter in the shader must be a 4x4 matrix /// (mat4 GLSL type). /// /// Example: /// \code /// uniform mat4 matrix; // this is the variable in the shader /// \endcode /// \code /// sf::Transform transform; /// transform.translate(5, 10); /// shader.setParameter("matrix", transform); /// \endcode /// /// \param name Name of the parameter in the shader /// \param transform Transform to assign /// //////////////////////////////////////////////////////////// void setParameter(const std::string& name, const Transform& transform); //////////////////////////////////////////////////////////// /// \brief Change a texture parameter of the shader /// /// \a name is the name of the variable to change in the shader. /// The corresponding parameter in the shader must be a 2D texture /// (sampler2D GLSL type). /// /// Example: /// \code /// uniform sampler2D the_texture; // this is the variable in the shader /// \endcode /// \code /// sf::Texture texture; /// ... /// shader.setParameter("the_texture", texture); /// \endcode /// It is important to note that \a texture must remain alive as long /// as the shader uses it, no copy is made internally. /// /// To use the texture of the object being draw, which cannot be /// known in advance, you can pass the special value /// sf::Shader::CurrentTexture: /// \code /// shader.setParameter("the_texture", sf::Shader::CurrentTexture). /// \endcode /// /// \param name Name of the texture in the shader /// \param texture Texture to assign /// //////////////////////////////////////////////////////////// void setParameter(const std::string& name, const Texture& texture); //////////////////////////////////////////////////////////// /// \brief Change a texture parameter of the shader /// /// This overload maps a shader texture variable to the /// texture of the object being drawn, which cannot be /// known in advance. The second argument must be /// sf::Shader::CurrentTexture. /// The corresponding parameter in the shader must be a 2D texture /// (sampler2D GLSL type). /// /// Example: /// \code /// uniform sampler2D current; // this is the variable in the shader /// \endcode /// \code /// shader.setParameter("current", sf::Shader::CurrentTexture); /// \endcode /// /// \param name Name of the texture in the shader /// //////////////////////////////////////////////////////////// void setParameter(const std::string& name, CurrentTextureType); //////////////////////////////////////////////////////////// /// \brief Get the underlying OpenGL handle of the shader. /// /// You shouldn't need to use this function, unless you have /// very specific stuff to implement that SFML doesn't support, /// or implement a temporary workaround until a bug is fixed. /// /// \return OpenGL handle of the shader or 0 if not yet loaded /// //////////////////////////////////////////////////////////// unsigned int getNativeHandle() const; //////////////////////////////////////////////////////////// /// \brief Bind a shader for rendering /// /// This function is not part of the graphics API, it mustn't be /// used when drawing SFML entities. It must be used only if you /// mix sf::Shader with OpenGL code. /// /// \code /// sf::Shader s1, s2; /// ... /// sf::Shader::bind(&s1); /// // draw OpenGL stuff that use s1... /// sf::Shader::bind(&s2); /// // draw OpenGL stuff that use s2... /// sf::Shader::bind(NULL); /// // draw OpenGL stuff that use no shader... /// \endcode /// /// \param shader Shader to bind, can be null to use no shader /// //////////////////////////////////////////////////////////// static void bind(const Shader* shader); //////////////////////////////////////////////////////////// /// \brief Tell whether or not the system supports shaders /// /// This function should always be called before using /// the shader features. If it returns false, then /// any attempt to use sf::Shader will fail. /// /// Note: The first call to this function, whether by your /// code or SFML will result in a context switch. /// /// \return True if shaders are supported, false otherwise /// //////////////////////////////////////////////////////////// static bool isAvailable(); private: //////////////////////////////////////////////////////////// /// \brief Compile the shader(s) and create the program /// /// If one of the arguments is NULL, the corresponding shader /// is not created. /// /// \param vertexShaderCode Source code of the vertex shader /// \param fragmentShaderCode Source code of the fragment shader /// /// \return True on success, false if any error happened /// //////////////////////////////////////////////////////////// bool compile(const char* vertexShaderCode, const char* fragmentShaderCode); //////////////////////////////////////////////////////////// /// \brief Bind all the textures used by the shader /// /// This function each texture to a different unit, and /// updates the corresponding variables in the shader accordingly. /// //////////////////////////////////////////////////////////// void bindTextures() const; //////////////////////////////////////////////////////////// /// \brief Get the location ID of a shader parameter /// /// \param name Name of the parameter to search /// /// \return Location ID of the parameter, or -1 if not found /// //////////////////////////////////////////////////////////// int getParamLocation(const std::string& name); //////////////////////////////////////////////////////////// // Types //////////////////////////////////////////////////////////// typedef std::map TextureTable; typedef std::map ParamTable; //////////////////////////////////////////////////////////// // Member data //////////////////////////////////////////////////////////// unsigned int m_shaderProgram; ///< OpenGL identifier for the program int m_currentTexture; ///< Location of the current texture in the shader TextureTable m_textures; ///< Texture variables in the shader, mapped to their location ParamTable m_params; ///< Parameters location cache }; } // namespace sf #endif // SFML_SHADER_HPP //////////////////////////////////////////////////////////// /// \class sf::Shader /// \ingroup graphics /// /// Shaders are programs written using a specific language, /// executed directly by the graphics card and allowing /// to apply real-time operations to the rendered entities. /// /// There are two kinds of shaders: /// \li Vertex shaders, that process vertices /// \li Fragment (pixel) shaders, that process pixels /// /// A sf::Shader can be composed of either a vertex shader /// alone, a fragment shader alone, or both combined /// (see the variants of the load functions). /// /// Shaders are written in GLSL, which is a C-like /// language dedicated to OpenGL shaders. You'll probably /// need to learn its basics before writing your own shaders /// for SFML. /// /// Like any C/C++ program, a shader has its own variables /// that you can set from your C++ application. sf::Shader /// handles 5 different types of variables: /// \li floats /// \li vectors (2, 3 or 4 components) /// \li colors /// \li textures /// \li transforms (matrices) /// /// The value of the variables can be changed at any time /// with the various overloads of the setParameter function: /// \code /// shader.setParameter("offset", 2.f); /// shader.setParameter("point", 0.5f, 0.8f, 0.3f); /// shader.setParameter("color", sf::Color(128, 50, 255)); /// shader.setParameter("matrix", transform); // transform is a sf::Transform /// shader.setParameter("overlay", texture); // texture is a sf::Texture /// shader.setParameter("texture", sf::Shader::CurrentTexture); /// \endcode /// /// The special Shader::CurrentTexture argument maps the /// given texture variable to the current texture of the /// object being drawn (which cannot be known in advance). /// /// To apply a shader to a drawable, you must pass it as an /// additional parameter to the Draw function: /// \code /// window.draw(sprite, &shader); /// \endcode /// /// ... which is in fact just a shortcut for this: /// \code /// sf::RenderStates states; /// states.shader = &shader; /// window.draw(sprite, states); /// \endcode /// /// In the code above we pass a pointer to the shader, because it may /// be null (which means "no shader"). /// /// Shaders can be used on any drawable, but some combinations are /// not interesting. For example, using a vertex shader on a sf::Sprite /// is limited because there are only 4 vertices, the sprite would /// have to be subdivided in order to apply wave effects. /// Another bad example is a fragment shader with sf::Text: the texture /// of the text is not the actual text that you see on screen, it is /// a big texture containing all the characters of the font in an /// arbitrary order; thus, texture lookups on pixels other than the /// current one may not give you the expected result. /// /// Shaders can also be used to apply global post-effects to the /// current contents of the target (like the old sf::PostFx class /// in SFML 1). This can be done in two different ways: /// \li draw everything to a sf::RenderTexture, then draw it to /// the main target using the shader /// \li draw everything directly to the main target, then use /// sf::Texture::update(Window&) to copy its contents to a texture /// and draw it to the main target using the shader /// /// The first technique is more optimized because it doesn't involve /// retrieving the target's pixels to system memory, but the /// second one doesn't impact the rendering process and can be /// easily inserted anywhere without impacting all the code. /// /// Like sf::Texture that can be used as a raw OpenGL texture, /// sf::Shader can also be used directly as a raw shader for /// custom OpenGL geometry. /// \code /// sf::Shader::bind(&shader); /// ... render OpenGL geometry ... /// sf::Shader::bind(NULL); /// \endcode /// ////////////////////////////////////////////////////////////