Ajout version Release/x64 avec les libraries x64 et tuning de la version Debug
This commit is contained in:
		
							
								
								
									
										261
									
								
								SQCSim2021/external/irrKlang-64bit-1.6.0/include/ik_vec3d.h
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										261
									
								
								SQCSim2021/external/irrKlang-64bit-1.6.0/include/ik_vec3d.h
									
									
									
									
										vendored
									
									
										Normal file
									
								
							| @@ -0,0 +1,261 @@ | ||||
| // Copyright (C) 2002-2018 Nikolaus Gebhardt | ||||
| // This file is part of the "irrKlang" library. | ||||
| // For conditions of distribution and use, see copyright notice in irrKlang.h | ||||
|  | ||||
| #ifndef __IRR_IRRKLANG_VEC_3D_H_INCLUDED__ | ||||
| #define __IRR_IRRKLANG_VEC_3D_H_INCLUDED__ | ||||
|  | ||||
| #include <math.h> | ||||
| #include "ik_irrKlangTypes.h" | ||||
|  | ||||
|  | ||||
| namespace irrklang | ||||
| { | ||||
|  | ||||
| 	//! a 3d vector template class for representing vectors and points in 3d | ||||
| 	template <class T> | ||||
| 	class vec3d | ||||
| 	{ | ||||
| 	public: | ||||
|  | ||||
| 		vec3d(): X(0), Y(0), Z(0) {}; | ||||
| 		vec3d(T nx, T ny, T nz) : X(nx), Y(ny), Z(nz) {}; | ||||
| 		vec3d(const vec3d<T>& other)	:X(other.X), Y(other.Y), Z(other.Z) {}; | ||||
|  | ||||
| 		//! constructor creating an irrklang vec3d from an irrlicht vector. | ||||
| 		#ifdef __IRR_POINT_3D_H_INCLUDED__ | ||||
| 		template<class B> | ||||
| 		vec3d(const B& other)	:X(other.X), Y(other.Y), Z(other.Z) {}; | ||||
| 		#endif // __IRR_POINT_3D_H_INCLUDED__ | ||||
|  | ||||
| 		// operators | ||||
|  | ||||
| 		vec3d<T> operator-() const { return vec3d<T>(-X, -Y, -Z);   } | ||||
|  | ||||
| 		vec3d<T>& operator=(const vec3d<T>& other)	{ X = other.X; Y = other.Y; Z = other.Z; return *this; } | ||||
|  | ||||
| 		vec3d<T> operator+(const vec3d<T>& other) const { return vec3d<T>(X + other.X, Y + other.Y, Z + other.Z);	} | ||||
| 		vec3d<T>& operator+=(const vec3d<T>& other)	{ X+=other.X; Y+=other.Y; Z+=other.Z; return *this; } | ||||
|  | ||||
| 		vec3d<T> operator-(const vec3d<T>& other) const { return vec3d<T>(X - other.X, Y - other.Y, Z - other.Z);	} | ||||
| 		vec3d<T>& operator-=(const vec3d<T>& other)	{ X-=other.X; Y-=other.Y; Z-=other.Z; return *this; } | ||||
|  | ||||
| 		vec3d<T> operator*(const vec3d<T>& other) const { return vec3d<T>(X * other.X, Y * other.Y, Z * other.Z);	} | ||||
| 		vec3d<T>& operator*=(const vec3d<T>& other)	{ X*=other.X; Y*=other.Y; Z*=other.Z; return *this; } | ||||
| 		vec3d<T> operator*(const T v) const { return vec3d<T>(X * v, Y * v, Z * v);	} | ||||
| 		vec3d<T>& operator*=(const T v) { X*=v; Y*=v; Z*=v; return *this; } | ||||
|  | ||||
| 		vec3d<T> operator/(const vec3d<T>& other) const { return vec3d<T>(X / other.X, Y / other.Y, Z / other.Z);	} | ||||
| 		vec3d<T>& operator/=(const vec3d<T>& other)	{ X/=other.X; Y/=other.Y; Z/=other.Z; return *this; } | ||||
| 		vec3d<T> operator/(const T v) const { T i=(T)1.0/v; return vec3d<T>(X * i, Y * i, Z * i);	} | ||||
| 		vec3d<T>& operator/=(const T v) { T i=(T)1.0/v; X*=i; Y*=i; Z*=i; return *this; } | ||||
|  | ||||
| 		bool operator<=(const vec3d<T>&other) const { return X<=other.X && Y<=other.Y && Z<=other.Z;}; | ||||
| 		bool operator>=(const vec3d<T>&other) const { return X>=other.X && Y>=other.Y && Z>=other.Z;}; | ||||
|  | ||||
| 		bool operator==(const vec3d<T>& other) const { return other.X==X && other.Y==Y && other.Z==Z; } | ||||
| 		bool operator!=(const vec3d<T>& other) const { return other.X!=X || other.Y!=Y || other.Z!=Z; } | ||||
|  | ||||
| 		// functions | ||||
|  | ||||
| 		//! returns if this vector equalsfloat the other one, taking floating point rounding errors into account | ||||
| 		bool equals(const vec3d<T>& other) | ||||
| 		{ | ||||
| 			return equalsfloat(X, other.X) && | ||||
| 				   equalsfloat(Y, other.Y) && | ||||
| 				   equalsfloat(Z, other.Z); | ||||
| 		} | ||||
|  | ||||
| 		void set(const T nx, const T ny, const T nz) {X=nx; Y=ny; Z=nz; } | ||||
| 		void set(const vec3d<T>& p) { X=p.X; Y=p.Y; Z=p.Z;} | ||||
|  | ||||
| 		//! Returns length of the vector. | ||||
| 		ik_f64 getLength() const { return sqrt(X*X + Y*Y + Z*Z); } | ||||
|  | ||||
| 		//! Returns squared length of the vector. | ||||
| 		/** This is useful because it is much faster then | ||||
| 		getLength(). */ | ||||
| 		ik_f64 getLengthSQ() const { return X*X + Y*Y + Z*Z; } | ||||
|  | ||||
| 		//! Returns the dot product with another vector. | ||||
| 		T dotProduct(const vec3d<T>& other) const | ||||
| 		{ | ||||
| 			return X*other.X + Y*other.Y + Z*other.Z; | ||||
| 		} | ||||
|  | ||||
| 		//! Returns distance from an other point. | ||||
| 		/** Here, the vector is interpreted as point in 3 dimensional space. */ | ||||
| 		ik_f64 getDistanceFrom(const vec3d<T>& other) const | ||||
| 		{ | ||||
| 			ik_f64 vx = X - other.X; ik_f64 vy = Y - other.Y; ik_f64 vz = Z - other.Z; | ||||
| 			return sqrt(vx*vx + vy*vy + vz*vz); | ||||
| 		} | ||||
|  | ||||
| 		//! Returns squared distance from an other point. | ||||
| 		/** Here, the vector is interpreted as point in 3 dimensional space. */ | ||||
| 		ik_f32 getDistanceFromSQ(const vec3d<T>& other) const | ||||
| 		{ | ||||
| 			ik_f32 vx = X - other.X; ik_f32 vy = Y - other.Y; ik_f32 vz = Z - other.Z; | ||||
| 			return (vx*vx + vy*vy + vz*vz); | ||||
| 		} | ||||
|  | ||||
| 		//! Calculates the cross product with another vector | ||||
| 		vec3d<T> crossProduct(const vec3d<T>& p) const | ||||
| 		{ | ||||
| 			return vec3d<T>(Y * p.Z - Z * p.Y, Z * p.X - X * p.Z, X * p.Y - Y * p.X); | ||||
| 		} | ||||
|  | ||||
| 		//! Returns if this vector interpreted as a point is on a line between two other points. | ||||
| 		/** It is assumed that the point is on the line. */ | ||||
| 		bool isBetweenPoints(const vec3d<T>& begin, const vec3d<T>& end) const | ||||
| 		{ | ||||
| 			ik_f32 f = (ik_f32)(end - begin).getLengthSQ(); | ||||
| 			return (ik_f32)getDistanceFromSQ(begin) < f && | ||||
| 				(ik_f32)getDistanceFromSQ(end) < f; | ||||
| 		} | ||||
|  | ||||
| 		//! Normalizes the vector. | ||||
| 		vec3d<T>& normalize() | ||||
| 		{ | ||||
| 			T l = (T)getLength(); | ||||
| 			if (l == 0) | ||||
| 				return *this; | ||||
|  | ||||
| 			l = (T)1.0 / l; | ||||
| 			X *= l; | ||||
| 			Y *= l; | ||||
| 			Z *= l; | ||||
| 			return *this; | ||||
| 		} | ||||
|  | ||||
| 		//! Sets the lenght of the vector to a new value | ||||
| 		void setLength(T newlength) | ||||
| 		{ | ||||
| 			normalize(); | ||||
| 			*this *= newlength; | ||||
| 		} | ||||
|  | ||||
| 		//! Inverts the vector. | ||||
| 		void invert() | ||||
| 		{ | ||||
| 			X *= -1.0f; | ||||
| 			Y *= -1.0f; | ||||
| 			Z *= -1.0f; | ||||
| 		} | ||||
|  | ||||
| 		//! Rotates the vector by a specified number of degrees around the Y | ||||
| 		//! axis and the specified center. | ||||
| 		//! \param degrees: Number of degrees to rotate around the Y axis. | ||||
| 		//! \param center: The center of the rotation. | ||||
| 		void rotateXZBy(ik_f64 degrees, const vec3d<T>& center) | ||||
| 		{ | ||||
| 			degrees *= IK_DEGTORAD64; | ||||
| 			T cs = (T)cos(degrees); | ||||
| 			T sn = (T)sin(degrees); | ||||
| 			X -= center.X; | ||||
| 			Z -= center.Z; | ||||
| 			set(X*cs - Z*sn, Y, X*sn + Z*cs); | ||||
| 			X += center.X; | ||||
| 			Z += center.Z; | ||||
| 		} | ||||
|  | ||||
| 		//! Rotates the vector by a specified number of degrees around the Z | ||||
| 		//! axis and the specified center. | ||||
| 		//! \param degrees: Number of degrees to rotate around the Z axis. | ||||
| 		//! \param center: The center of the rotation. | ||||
| 		void rotateXYBy(ik_f64 degrees, const vec3d<T>& center) | ||||
| 		{ | ||||
| 			degrees *= IK_DEGTORAD64; | ||||
| 			T cs = (T)cos(degrees); | ||||
| 			T sn = (T)sin(degrees); | ||||
| 			X -= center.X; | ||||
| 			Y -= center.Y; | ||||
| 			set(X*cs - Y*sn, X*sn + Y*cs, Z); | ||||
| 			X += center.X; | ||||
| 			Y += center.Y; | ||||
| 		} | ||||
|  | ||||
| 		//! Rotates the vector by a specified number of degrees around the X | ||||
| 		//! axis and the specified center. | ||||
| 		//! \param degrees: Number of degrees to rotate around the X axis. | ||||
| 		//! \param center: The center of the rotation. | ||||
| 		void rotateYZBy(ik_f64 degrees, const vec3d<T>& center) | ||||
| 		{ | ||||
| 			degrees *= IK_DEGTORAD64; | ||||
| 			T cs = (T)cos(degrees); | ||||
| 			T sn = (T)sin(degrees); | ||||
| 			Z -= center.Z; | ||||
| 			Y -= center.Y; | ||||
| 			set(X, Y*cs - Z*sn, Y*sn + Z*cs); | ||||
| 			Z += center.Z; | ||||
| 			Y += center.Y; | ||||
| 		} | ||||
|  | ||||
| 		//! Returns interpolated vector. | ||||
| 		/** \param other: other vector to interpolate between | ||||
| 		\param d: value between 0.0f and 1.0f. */ | ||||
| 		vec3d<T> getInterpolated(const vec3d<T>& other, ik_f32 d) const | ||||
| 		{ | ||||
| 			ik_f32 inv = 1.0f - d; | ||||
| 			return vec3d<T>(other.X*inv + X*d, | ||||
| 								other.Y*inv + Y*d, | ||||
| 								other.Z*inv + Z*d); | ||||
| 		} | ||||
|  | ||||
| 		//! Gets the Y and Z rotations of a vector. | ||||
| 		/** Thanks to Arras on the Irrlicht forums to add this method. | ||||
| 		 \return A vector representing the rotation in degrees of | ||||
| 		this vector. The Z component of the vector will always be 0. */ | ||||
| 		vec3d<T> getHorizontalAngle() | ||||
| 		{ | ||||
| 			vec3d<T> angle; | ||||
|  | ||||
| 			angle.Y = (T)atan2(X, Z); | ||||
| 			angle.Y *= (ik_f32)IK_RADTODEG; | ||||
|  | ||||
| 			if (angle.Y < 0.0f) angle.Y += 360.0f; | ||||
| 			if (angle.Y >= 360.0f) angle.Y -= 360.0f; | ||||
|  | ||||
| 			ik_f32 z1 = (T)sqrt(X*X + Z*Z); | ||||
|  | ||||
| 			angle.X = (T)atan2(z1, Y); | ||||
| 			angle.X *= (ik_f32)IK_RADTODEG; | ||||
| 			angle.X -= 90.0f; | ||||
|  | ||||
| 			if (angle.X < 0.0f) angle.X += 360.0f; | ||||
| 			if (angle.X >= 360) angle.X -= 360.0f; | ||||
|  | ||||
| 			return angle; | ||||
| 		} | ||||
|  | ||||
| 		//! Fills an array of 4 values with the vector data (usually floats). | ||||
| 		/** Useful for setting in shader constants for example. The fourth value | ||||
| 		 will always be 0. */ | ||||
| 		void getAs4Values(T* array) | ||||
| 		{ | ||||
| 			array[0] = X; | ||||
| 			array[1] = Y; | ||||
| 			array[2] = Z; | ||||
| 			array[3] = 0; | ||||
| 		} | ||||
|  | ||||
|  | ||||
| 		// member variables | ||||
|  | ||||
| 		T X, Y, Z; | ||||
| 	}; | ||||
|  | ||||
|  | ||||
| 	//! Typedef for a ik_f32 3d vector, a vector using floats for X, Y and Z | ||||
| 	typedef vec3d<ik_f32> vec3df; | ||||
|  | ||||
| 	//! Typedef for an integer 3d vector, a vector using ints for X, Y and Z | ||||
| 	typedef vec3d<ik_s32> vec3di; | ||||
|  | ||||
| 	template<class S, class T> vec3d<T> operator*(const S scalar, const vec3d<T>& vector) { return vector*scalar; } | ||||
|  | ||||
| } // end namespace irrklang | ||||
|  | ||||
|  | ||||
| #endif | ||||
|  | ||||
		Reference in New Issue
	
	Block a user